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PREFACE
PICA comprises a set of programs (turbo pascal DOS executables) that implement several probabilistic
approaches to compatibility-based phylogenetic analyses. PICA was first developed in the Department
of Geology, University of Bristol, while | was a postgraduate student and Research Assistant to Prof.
Mike Benton. The absence of programs to implement Sharkey's (1989) method of character ranking led
me to program this and some alternative but related approaches and led to a first release of PICA in
1992. Subsequent releases (PICA94, PICA95) added additional programs, with the emphasis shifting
to compatibility-based randomisation tests. This release of PICA includes programs implementing
methods described in Wilkinson (1997a, 1998a) and all the previous programs have been substantially
revised to make them easier to use. Time constraints have prevented me from implementing many of
my ambitions for PICA: not all of the programs include as many options as | would have liked, and
plans for several additional programs have been temporarily shelved. If you have specific needs that
aren’t met by the current programs please let me know and | may be able to provide additional software
that is in development. | must stress that my programming skills are limited and that the programs are
'no frills' number crunchers. Until that happy day when the programs are rendered redundant by more
sophisticated and user-friendly software, the package may be further developed, in which case bug
reports, upgrades or notices of upgrades, will be distributed to all registered users. If you did not
receive your copy from me then please register.

Restrictions and Citation

PICA 4.0 is distributed for the sole purpose of facilitating and promoting research and is a non-
commercial product. The programs and this manual may be freely copied and distributed. The
recommended citation is:

Wilkinson, M. 2001 PICA 4.0: software and documentation. Department of Zoology, The
Natural History Museum, London.

Not all of the programs have been extensively tested, particularly with large data sets.
| believe the programs to be free of major bugs.

Please register as a user and report any bugs to me:

e-mail: marw@nhm.ac.uk - Tel: +44 (0)20 7942 5164 - Fax: 7942 5433

© Mark Wilkinson, 2001

You should have received the following programs and files:

Program Files: Data and split files:
ALROY.EXE EXAMPLE.DAT
BOILPICA.EXE EXAMPLE.SPL
DNALQP.EXE
FAITH1-4.EXE DOS Batch files:
JACTAX.EXE BOILDOWN.BAT
LQPROB.EXE FAITH.BAT
MATRIX.EXE
NATRIX.EXE Manual:

PARTPICA.EXE PICA4.PDF
RPTP.EXE
SETPICA.EXE

SPLIT.EXE
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INTRODUCTION

Almost always, systematic data includes characters that provide contradictory evidence of phylogenetic
relationships. Compatibility analysis includes a number of techniques that make use of the Le Quesne
test of character compatibility (Le Quesne, 1969), or analogous compatibility tests, to identify when
two characters provide contradictory evidence of phylogenetic relationships. For a pair of characters,
each with two alternative character states (e.g. 0 and 1), there are four possible permutations of
character states that we can observe in organisms (00, 01, 10, 11). If characters are non-polar, then
observation of all four possible permutations means that the characters are mutually incompatible. If
each character evolved with only a single character state transformation (so that both fit the true
phylogeny), at most three permutations of character states can be produced. Observation of all four
permutations implies at least three transformations for the pair of characters, and homoplasy in at least
one of the pair of characters. For polarised binary characters, we need only observe all three of the
permutations of character states that comprise one or more derived state for the characters to be
incompatible. This reflects the fact that the a priori hypotheses of polarity of the two characters imply
the existence of an ancestral taxon with the combination of both primitive character states (Meacham,
1984). A graphical representation of the Le Quesne test (title page) is used as a motif for this package.

Pairs of characters that are compatible need not be free of homoplasy, and single pairwise Le Quesne
tests are of limited value. However, patterns of (in)compatibility in data that are revealed by exhaustive
testing of all pairs of characters can identify characters that are particularly responsible for conflict in
the data and may therefore be inferred to be the more likely to be homoplastic. For example, consider
three pairwise Le Quesne tests of the three characters X, Y and Z. If we find that X and Y, and X and Z
are incompatible pairs and that Y and Z are compatible, this entails homoplasy in at least one of X and
Y, and at least one of X and Z. The observations entails nothing further about the location of the
homoplasy, but suggests that the homoplasy is in X. This is the simplest (but not the only) explanation
and its plausibility increases to the extent that X is incompatible with additional mutually compatible
characters.

One of the earliest applications of compatibility methods was in the elimination of conflict by the
selection of preferred characters based on repeatable quantitative methods (Le Quesne, 1969; 1972). In
particular, clique analysis allowed the identification of maximally large collections of mutually
compatible characters (Estabrook et al., 1977). These techniques lost popularity in the 1970’s and
1980’s partly as a result of particularly hostile criticisms from advocates of parsimony analyses and
from Felsenstein’s (1978) demonstration that both parsimony and clique methods can be positively
misleading. Some of these criticisms, such as Felsenstein’s, have retained their force whereas others
appear quite unreasonable in retrospect. For example, Kluge’s (1976) criticism that clique analysis may
yield multiple optimal trees applies equally to parsimony analysis, although this was not appreciated at
the time. Unfortunately, antipathy to clique analysis tends to be extended uncritically to other
applications of compatibility methods. In my view, the widespread reluctance to utilise compatibility
methods is a clear case of throwing the baby out with the bath water. Other applications of
compatibility methods that have been suggested include: to provide information used for ranking or
weighting characters (Farris, 1969; Gauld & Underwood, 1986; Sharkey, 1989; Wilkinson, 19923,
1994a) or otherwise measuring their quality (Wilkinson, 1997a) or using apparent quality in tree
selection (Salisbury, 1999), to identify problematic taxa that are particularly responsible for conflict
(Guise et al., 1982; Gauld & Underwood, 1986), to order multistate characters (Wilkinson, 1992a,
1997b; Sharkey, 1994), as a secondary optimality criterion for choosing among equally parsimonious
tees (Sharkey, 1989; Rodrigo, 1992), to provide statistical tests of null hypotheses that individual
characters, hypothesised taxa or entire data sets are random/uninformative (Le Quesne, 1989;
Wilkinson, 1992a, 1997a,c; Alroy, 1994; Meacham, 1994; Day et al., 1998), to explore reticulate
evolution (Jakobsen & Easteal, 1996), to test for clonality and recombination in molecular population
ecology (Mes, 1998; van der Hulst et al. 2000) to test for minimal tree length in parsimony analysis
(e.g. Foulds et al. 1979, Wilkinson, 1998b), to produce Nelson (Page, 1989) and reduced Adams
consensus trees (Wilkinson, 1994b), to build supertrees from matrix representations of trees (Rodgrigo,
1996; Purvis, 1995) and to extract information from partition tables summarising bootstrap analyses
(Wilkinson, 1996). An excellent, though no longer comprehensive review of compatibility methods is
provided by Meacham & Estabrook (1985). | am convinced that compatibility methods have much to
offer systematists, particularly in the realms of data exploration, character weighting, and the statistical
testing of data quality, congruence, and hypotheses of relationships.
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SOME TERMINOLOGY AND BACKGROUND

In this section | provide some basic terminology, conceptual background and information on the
techniques implemented in PICA. The coverage here is in many ways superficial and | stress that it is
no substitute for the primary literature, which in most cases describes the concepts, measures and tests
in greater detail and provides examples of their use.

There are already a number of synonyms for the tests and measures included in PICA, which may
cause some confusion. To promote clarity, particularly with respect to the naming of permutation tail
probabilities (PTPs) based on different measures and different randomisation procedures, | have
adopted a new scheme of nomenclature that differs from previous terminologies including my own.
Most of the programs in PICA allow assessments of (1) entire data matrices, (2) of data partitions, (3)
of individual characters, or (4) of particular hypotheses of relationships, using a range of different
measures and alternative randomisation procedures. The nomenclature | have adopted is motivated by
the desire to make plain the relationship of the test statistic to both what is being assessed and how it is
being assessed. Thus names and acronyms begin with in indicator of what is being assessed, followed
by one or more indicators of how the assessment is made. The terminology is explained in the text and
summarised in Table 1 and the Appendix.

Characters

Characters have a dualistic nature. Operationally, characters are representations of biological variation
using discrete partitions (character states) of that underlying variation. Conceptually characters
represent hypotheses of homology and therefore of relationships. Thus, in one sense, characters (at
least those that are not invariant) are trees (sets of one or more splits). Polar and non-polar characters
are equivalent to rooted and non-rooted trees respectively. Unordered multistate and incompletely
ordered multistate characters are frequently represented by reticulate character state trees or networks.
Here the reticulation is not an hypothesis of relationships as such, but is a graphical representation of
several alternative hypotheses of relationships, and thus of uncertainty. Using compatibility methods,
characters can be compared to each other and to hypotheses of relationships (splits).

Splits: Full, Partial and Rooted

A split is a bipartition of taxa (Bandelt & Dress, 1992; Penny et al. 1993). Each branch or edge of a tree
partitions the taxa into two mutually exclusive and exhaustive sets (a full split). In rooted trees (rooted
splits) at least one of these sets corresponds to a clade. Partial splits are a partitioning of taxa into two
mutually exclusive but not exhaustive groups (some subset of taxa are unassigned). Full and Partial
splits are somewhat more euphonious terms for the relationships | have denoted as n-taxon
statements/partitions of varying cardinality (Wilkinson, 1994b, 1995a). A split can be represented as a
binary character (Farris, 1973; Baum, 1992; Ragan, 1992) and its compatibility with a set of data can
be determined just as if it were a character (Alroy, 1994). Under the view that characters are
hypotheses of relationships, characters are splits (but splits need not be characters). In PICA, splits are
represented using the ‘0" and ‘1’ symbols. As a result, full splits are equivalent to binary numbers, and
this provides a useful indexing system for splits (Lento et al. 1995). For some of the tests in PICA, the
size (i.e. the number of taxa) in the subsets defined by a split is important. For rooted splits, split size
is taken as the number of taxa in the clade. For unrooted splits, split size is simply the size of the
smaller subset of taxa.

(In)compatibility: Conflict, Nesting and Support

Given a set of taxa, two characters conflict or are incompatible if there exists no non-reticulate tree for
these taxa on which both characters can evolve without homoplasy (Meacham & Estabrook, 1985). If
characters do not conflict then they are compatible. Viewed as trees, two characters are compatible if
they jointly contradict the assumption that they both represent relationships in a single true non-
reticulate tree for the taxa. These relations can be determined for pairs of characters, for pairs of splits
or for a split and a character. | use conflict and incompatibility interchangeably, but use only the
abbreviation for conflict (C) in the naming of randomisation test statistics based on this concept.

In the simple Le Quesne test for binary characters described in the introduction, (in)compatibility can
be determined by counting the number of observed permutations of character states and comparing this
with the maximum possible if the characters are compatible. This test makes no assumption about
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character polarity. If characters are polar, this is equivalent to assuming a priori the existence of a
common ancestor that has both characters in the assumed primitive state, and this assumption can be
incorporated into a polar test.

For some purposes it is useful to distinguish subcategories of the compatibility of characters. A pair of
compatible polar binary characters may be compatible through disjunction, nesting, or equivalence
(Meacham, 1981; Alroy, 1994; Wilkinson, 1998a). They are disjunct if the intersection of the taxa with
their derived states is empty. Nesting occurs when the set of taxa with the derived state of one character
is a subset of the set of taxa with the derived state of the other character. Nesting (N) has also been
termed hierarchy (Alroy, 1994) but the former is used here because there are both inclusive and
exclusive hierarchies. Equivalence is where the characters have the same taxonomic distributions of
derived and primitive character states and thus represent the same hypothesis of relationships.
Equivalence might be considered a special case of nesting. Disjunction and nesting are relations that do
not apply to non-polar characters, but equivalence does apply. For non-polar characters equivalence is
when the characters partition the taxa into identical subsets.

These various sub-types of compatibility give rise to separate measures and tests that capture different
aspects of the data. In PICA measures and tests based on the concept of equivalence are used only in
the evaluation of splits (hypotheses of relationships). Equivalence between a character and a
hypothesised split is termed support (i.e. for the split) (S) and used in the naming of randomisation test
statistics (see below). | have previously used the similar term equivalent in a different but related sense
that is only likely to cause confusion. Here, the terms equivalence and equivalent are not used in the
naming of randomisation test statistics.

Conflict, Nesting and Support of Characters, Matrices, Partitions and Splits

For a given character in a given data set, character conflict is simply the total number of characters
with which the character conflicts. For a given data set, matrix conflict (MC) is the total number of
pairs of characters that conflict. For a subset of the characters, within partition conflict (WC) is the
number of pairs of characters within the partition that conflict. Split conflict (SC) is the number of
characters with which a specific split is incompatible. Between partition conflict (BC) is the number of
pairwise conflicts between characters drawn from different partitions. In PICA, character and matrix
conflicts are typically reported as incompatibilities or incompatibility counts. Analogous nesting and
support measures can be defined for characters, matrices, partitions, and splits. Of these, this version of
PICA uses matrix nesting (MN), within partition nesting (WN), between partition nesting (BN), split
nesting (SN), and split support (SS). The precise definition of the latter requires some consideration of
weighting and is discussed more fully below.

Ordered and Unordered Multistate Characters

Pairwise tests of character compatibility can be applied to ordered multistate characters. Two ordered
multistate characters are compatible iff all of their binary factors are compatible. While a pair of
ordered multistate characters may be incompatible, some subset of their binary factors may be
compatible. In PICA ordered multistate characters must be represented by their binary factors and the
focus is upon the compatibilities of these binary factors rather than upon the compatibility of the
multistate character as a whole. This has implications for weighting. In PICA all columns in the input
data matrix are given equal weight for determining conflict, nesting or support measures (so that
weights are not 'scaled’). Thus the n-1 binary factors of a single n-state character each have weight of
unity rather than a fractional weight of 1/(n-1). The binary factors of a multistate character are
necessarily mutually compatible (p = 1). In calculating probabilistic measures, and in randomly
permuting data the interdependence of binary factors (or of other characters that are not independent)
should not be overlooked and most of the programs in PICA will treat characters as not independent if
instructed to by the user (see Input File Format, integer codes).

Pairwise tests of (in)compatibility can be applied to unordered multistate characters (such as nucleotide
sequences). Most programs in PICA can determine compatibilities for unordered characters with up to
five character states using a method based on that of Estabrook & Landrum (1975) combined with a
simple pre-test that simply compares the number of observed combinations of character states with the
maximum number permitted if the characters are compatible. Day et al. (1998) distinguish the
compatibility of unordered multistate characters as potential compatibility because it depends on the
existence of compatible orderings of the characters.
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Cliques and Clique Analysis

An early focus of compatibility analysis was in finding sets of mutually compatible characters. A set of
mutually compatible characters that is not a subset of some larger set of mutually compatible characters
is a clique. Clique size provides a possible criterion for choosing among alternative phylogenetic
hypotheses and breaching the impasse created by incompatible data (Estabrook et al. 1977). Computer
implementations of clique analysis include CLINCH (Fiala, 1984) and the CLIQUE program in
Felsenstein's (1995) PHYLIP package. The method is not featured in PICA.

Probabilities and Expectations

The probability of two characters conflicting given the observed numbers of taxa with each character
state if the assignment of character states to taxa is random can be calculated analytically (Le Quesne,
1969; Meacham, 1981). Alternatively, it can be estimated by repeated random permutation (i.e.
shuffling) of the assignment of character states to taxa, or determined by exhaustive enumeration of all
possible permutations. The probability depends on the numbers of taxa with (or in) each character state
for each character. SETPICA.EXE calculates probabilities of compatibility analytically but it can be used
only with binary character data. The probability of compatibility for binary factors of multistate
characters can be set at unity. Other programs, including all those that accept multistate data, use either
random permutation or exhaustive enumeration to investigate probabilities of conflict, nesting or
support between characters, or between characters and splits.

Permutations may be of individual characters, of partitions, of entire matrices, or of splits. In PICA,
individual character permutation is used only in the determination of Le Quesne probabilities (see
below), and their probability of compatibility with other interdependent characters can be set at unity.
In randomisation tests of splits probabilities can be determined by randomly permuting the character
data or by randomly permuting the hypothesis of relationships represented by the split. Most
randomisation tests involve randomisation of the data (single characters or entire matrices). | use
relationship and the abbreviation (R) in the in the names and acronyms of randomisation tests of splits
to distinguish those tests that use randomisation of the split rather than randomisation of the data.
Similarly, where the randomisation is of the assignment of characters to partitions | use partition (P) to
distinguish these tests. Where the entire character data is randomly permuted, most programs allow
collections of interdependent characters to be randomly permuted together so as to preserve their
mutual compatibility.

The expected number of conflicts, nestings or support of a character, a matrix, a split, or between
character partitions is the arithmetic sum of the corresponding probabilities for all relevant pairwise
comparisons. Alternatively, it is the average found by exhaustive enumeration or approximated by
random permutation.

Coefficient of Character State Randomness and Normal Deviate

The Coefficient of Character State Randomness (CCSR) is the number of observed compatibilities
divided by the number expected for random data. Le Quesne (1969) introduced the CCSR, which can
be calculated for data matrices or for individual characters, and reported it as a percentage. Here, this
simple measure of data quality is reported as a simple ratio. Gauld & Underwood (1986) and Sharkey
(1989) called the CCSR the 'randomness ratio'. In PICA characters having no incompatibilities
including those that are uninformative under parsimony are assigned a CCSR of zero.

The normal deviate (NDEV) is a z-score that describes the difference between the observed and
expected number of incompatibilities in units of standard deviations from the mean. Use of the normal
deviate in boildowns (see below) is premised upon the normal approximation of the binomial
distribution, otherwise it is based upon direct estimation of standard deviations. Le Quesne (1972,
1989) introduced the normal deviate for both individual characters and entire data matrices. It can be
used simply as a measure of data quality. As a z-score, the normal deviate can also be interpreted as a
test statistic for the null hypothesis that the entire data or an individual character is random and by
implication phylogenetically uninformative (Le Quesne, 1989). However, use of the normal deviate as
a test of individual characters may be compromised by non random relations among the other
characters in the data matrix, which can result in polymodal distributions of the compatibility of
random characters (pers. obs.). In PICA, characters that are uninformative under parsimony are
assigned a normal deviate of zero.
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Boildowns and Absolute Weights

Gauld & Underwood (1986) developed a procedure in which character CCSRs are determined and the
character(s) with the worst (highest) CCSR are eliminated, CCSRs are recalculated for the reduced data
and the next worst characters eliminated and so on until there is no incompatibility among the
remaining characters. This iterative (successive approximations) procedure is similar to that described
by Le Quesne (1969, 1972) for several of his non-probabilistic character selection methods and can
also be based upon other measures such as the normal deviate or the Le Quesne probability (Wilkinson,
1992a). | use boildown as a general term for procedures having this form without regard to the specific
measure employed in selecting the 'worst' character(s). BOILDOWN.BAT controls the operation of
SETPICA.EXE and BOILPICA.EXE which jointly implement normal deviate and CCSR boildowns (of
binary data only).

Boildowns will identify a set of mutually compatible characters that may or may not be a clique. | refer
to such sets of characters as core sets. We may consider that some characters are particularly important.
In that case it would be useful to be able to specify that a core set identified by a boildown should
include those characters. PICA allows this through specification of a core clique constraint: a listing of
characters that should not be eliminated in the boildown no matter what their CCSRs or normal
deviates. Note that in this release of PICA characters in the constraint must be mutually compatible.

Sharkey (1989) suggested using the CCSR boildown to provide an absolute ranking of characters.
Character rank is determined by the reverse order of their elimination in the boildown. Using Sharkey's
method the core clique characters are assigned the highest rank and used to produce a phylogenetic
hypothesis. Other lower rank characters are then reintroduced (last out first back in) and their
parsimonious interpretation is used to provide additional resolution under the constraint that characters
of lower rank can never overturn hypotheses supported by characters of higher rank. Wilkinson (1994a)
described how Sharkey's absolute ranking could be represented by an analytically equivalent
differential numerical character weighting, termed absolute weighting, that could be used to greatly
simplify the practical application of Sharkey's method. PICA calculates absolute weights for characters
as part of the boildown.

Randomisation Tests and Permutation Tail Probabilities

Randomisation tests of systematic data were developed independently by Archie (1989a) and by Faith
& Cranston (1991) in the context of parsimony analysis. Their tests use the lengths of most
parsimonious trees (MPTSs) as a measure of the hierarchical correlation and possible phylogenetic
structure/signal in the data. They compare tree length for the original data to tree lengths for randomly
permuted data, in which the assignment of character states to terminal taxa are randomly permuted
within characters while preserving the observed numbers of taxa with (or in) each character state.
These tests are aimed at evaluating the null hypothesis that a data matrix is indistinguishable from
randomly permuted and thus phylogenetically meaningless data in which the congruence among
characters (as measured by tree length) is no greater than would be expected by chance alone. Faith &
Cranston's (1991) parsimony permutation tail probability (PTP) is the proportion of tree lengths as
short or shorter than that for the original data for all data sets. Because the original data set is included
in the sample, the minimum PTP is 1/(N+1) where N is the number of randomly permuted data sets.
Parsimony PTPs below an accepted cut-off (e.g. 0.05) allow rejection of the null hypothesis that the
data has no more congruence (structure) than expected by chance alone. Failure to pass the test
suggests that phylogenetic inferences based on the data have little or no credibility and that the data is
not suitable for phylogeny reconstruction. Other parsimony PTPs have been developed. For example,
Faith (1991) introduced tests for hypotheses of monophyly and non-monophyly that are based on
length differences between MPTs that differ with respect to some group. Phylogenetic randomisation
tests have proven controversial. However, more generally, randomisation tests are widely used and
respectable statistical methods (see, Manly [1991] for an authoritative introduction) and | see no reason
why they should not be used in a phylogenetic context.

Randomisation tests and PTPs can be based on other measures of data quality. Archie (1989a)
suggested that randomisation tests could be extended to clique analysis by testing the informativeness
of characters that are excluded from preferred cliques. To my knowledge this interesting suggestion has
not been explored further, but other compatibility-based applications of randomisation tests have been
proposed. A CSPTP (clique size PTP) test directly analogous to the original parsimony PTP was
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developed by Wilkinson (1992a,b). The CSPTP is the proportion of sampled data sets having maximal
cliques as large or larger than the original data. This test is not included in this version of PICA. The
CSPTP test is based, like parsimony-based tests, on a measure of hierarchical structure that is also a
criterion for choosing among phylogenetic hypotheses. Similar tests could be developed for any
method where tree choice is based on some optimality criterion. The performance of different methods
in randomisation tests might sometimes reveal that particular methods are better able to discriminate
signal from noise in particular data sets with obvious implications for choice of method (Archie, 1989a;
Wilkinson, 1992a).

Alternative compatibility randomisation tests have been developed that use compatibility relations
among characters or between splits and characters as measures of data quality or of the quality of
particular phylogenetic hypotheses. These can be calculated relatively easily without the need to
compute or choose a tree, and they providing a method- or tree-independent set of randomisation tests.

Table 1. Summary of characteristics of randomisation tests and associated

abbreviations.

Property
General Specific Abbreviation Synonyms
Matrix M -
Focus Within Partit?o.n w
Between partitions B -
Character none used -
___________________ selit S -
Conflict C Incompatibility
Measure Nesting N Hierarchy
___________________ Support  _ ________.___.__.S_______ . _Equivalence
Data (all characters) none used -
Random Partitions P -
Permutation  Single character none used
Relationship R Equivalent

Table 1, summarises the different properties of the PTP tests in PICA. As noted above, tests differ with
respect to their focus (individual characters, matrices, partitions, and splits), the measure used (conflict,
nesting, support) and in the kind of randomisation. These properties are combined in this order (focus,
measure and, where necessary, randomisation procedure) to give the name of the PTP test statistic. The
kind of randomisation procedure is not indicated if it is the character data that is randomly permuted
(i.e. the assignment of taxa to character states). Randomisations of the assignments of characters to
partitions or of relationships are distinguished as PPTPs and RPTPs respectively. Each property
referred to in the name of a test statistic is represented by a single letter abbreviation giving each test a
unique acronym. For example, the matrix conflict PTP (MCPTP) is a test of a matrix using character
conflicts and character randomisation, and the BCPPTP is a test of the conflict between partitions using
randomisation of partitions. The names and acronyms of the PTP tests as used in PICA and their
synonyms in other works are given in the Appendix.

That a data set passes a matrix randomisation test does not justify the conclusion drawn by some that
the data contains ‘significant phylogenetic structure’. The structure it contains may or may not be
phylogenetic. Furthermore, it does not indicate the location of the structure. With most matrix
randomisation tests, it is likely that relatively little potentially phylogenetic structure is needed to reject
the null hypothesis and that data sets that pass the test could include considerable random data. Faith &
Cranston (1991) described conditional parsimony PTP tests in which only a subset of the data set was
randomised. Most programs in PICA allows such conditional tests through specification of taxa (e.g.
ingroup), and in some cases subsets of characters, to be excluded from the random permutation.

Matrix Conflict and Matrix Nesting PTPs

Wilkinson (1992a,b), Alroy (1994) and Day et al. (1998) independently developed a randomisation test
of data matrices that uses the pairwise (in)compatibilities of all characters within the matrix as a
measure of the quality or strength of phylogenetic signal in the matrix. The greater the conflict the
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lower the quality of the data. The test statistic, is here termed the matrix conflict PTP (MCPTP) = the
proportion of data sets (original and randomly permuted) having conflict (i.e. an incompatibility count)
as low as, or lower than, the original data. Alroy (1994) described an analogous tests using nesting
(hierarchy), a subset of the relations that can pertain between compatible characters (see also
Wilkinson, 1998a). The matrix nesting PTP (MNPTP) = the proportion of data sets (original and
randomly permuted) that have as much or more nesting pairs than the original data. These tests are
implemented in MATRIX.EXE and NATRIX.EXE respectively. Alroy (1994) considered the nesting test
more sensitive to phylogenetic, as opposed to other correlations between characters, in a data set than
the MCPTP test. However, it is applicable only to polar characters and, as implemented in PICA, only
to binary characters.

These matrix PTPs describe the proportions of randomly permuted data sets that, judged in terms of
conflict or nesting, are of as good or better quality than the original data. If this proportion is
insufficiently small then we cannot reject the null hypothesis that the original data is not significantly
better than randomly permuted data. Given that the success of all phylogenetic methods depends upon
data quality, failure to reject the null hypothesis implies that the data should be judged unreliable for
phylogenetic inference. Passing matrix randomisation tests might reasonably be considered a
minimum requirement of phylogenetic data. What is considered significant is, of course, decided by the
investigator. The test here is one-tailed, so the ‘standard’ level of significance is when the PTP is £
0.05.

Within and Between Partition Conflict PPTPs.

Parsimony-based incongruence or partition homogeneity tests have been developed for assessing the
significance of incongruence between data partitions (Farris et al. 1994; Huelsenbeck et al. 1996).
Analogous compatibility-based tests of partition heterogeneity compare the level of between partition
incompatibility to that expected for random partitions of the same size (Wilkinson, 1997a). The greater
the conflict the more heterogeneous the partitions. Random partitions represent a standard for ‘non-
significant’ heterogeneity against which the original partitions are judged. In this test it is the
assignment of characters to partitions that is randomly permuted rather than the data and this yields
partition (P)PTPs. The between partition compatibility PPTP (BCPPTP) = the proportion of partitions
(original and randomly permuted) for which the between partition conflict (incompatibility) is as high
or higher than for the original partitions. The BCPPTP is a test statistic for the null hypothesis that the
original partitions are no more heterogeneous than random partitions. The test is mostly used in
determining whether data should or should not be combined, with significant heterogeneity being taken
as grounds for not combining data. With molecular data, heterogeneity between genes may be
indicative of different gene trees. The test can also be used to explore potential interdependencies
between characters and possible correlated homoplasy (e.g. Wilkinson, 1997a).

The conflict within each partition can also be compared to that for equivalent sized but randomly
permuted partitions in order to determine if partitions are of significantly high or low quality compared
to the ‘standard’ given by a random partition of the same size. The within partition conflict PPTP
(WCPPTP) = the proportion of partitions (original and randomly permuted) for which the within
partition conflict (incompatibility) is as low or lower than for the original partition. The WCPPTP can
be used as a one tailed test if a specific hypothesis is being tested but can otherwise be used as a two-
tailed test. A low (e.g. £ 0.025) WCPPTP indicates significantly little conflict, and a high (e.g. 3 0.975)
WCPPTP indicates significantly high conflict, in the partition. Comparison of results for different
partitions can be used to rank or otherwise compare the data quality of partitions. These PPTP tests are
implemented in PARTPICA.EXE. A limitation of the current implementation is that it ignores any
independence specified for the character data.

Within and Between Partition Conflict and Nesting PTPs.

Within and between partition conflicts can also be compared to randomly permuted data producing
standard PTPs. The within partition conflict PTP (WCPTP) = the proportion of data sets (original and
randomly permuted) for which the within partition conflict (incompatibility) is as low or lower than for
the original data. The test is essentially the MCPTP test except that the focus is on the partition rather
than the entire matrix. Similarly a within partition nesting PTP (WNPTP) = the proportion of data sets
(original and randomly permuted) for which the within partition nesting is as high or higher than for the
original data, and this test is similarly related to the corresponding MNPTP.
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The between partition conflict PTP (BCPTP) = the proportion of data sets (original and randomly
permuted) for which the between partition conflict (incompatibility) is as low or lower than for the
original data. Similarly the between partition nesting PTP (BNPTP) = the proportion of data sets
(original and randomly permuted) for which the between partition nesting is as high or higher than for
the original data. The interpretation of the BCPTP depends on the details of the randomisation. In
PICA these statistics can be calculated for no more than a pair of partitions. Where the characters in
both partitions are randomised the expectation is that the conflict between phylogenetically informative
partitions should be less, and nesting greater, than for similar partitions of randomly permuted and
phylogenetically uninformative data. A significantly low BCPTP or BNPTP thus allows the rejection
of the null hypothesis that the partitions show no less conflict or no more nesting than random data.
Because random data rather than random partitions provide the basis of the comparison, these are likely
to be much weaker tests than the corresponding PPTP tests. PICA also allows conditional tests in
which the data in only one of the partitions is randomised. In this case, the BCPTP and BNPTP are test
statistics for the null hypotheses that the randomised partition is random with respect to the partition
that is held constant. These tests are implemented in NATRIX.EXE and MATRIX.EXE.

Tests of Splits: A Priori, A Posteriori, and Relationship

Faith (1991) introduced parsimony-based randomisation tests of hypotheses of monophyly and non-
monophyly. Tree-independent tests of hypothesised relationships have been developed using
compatibility. Alroy (1994) introduced the promising idea of using the compatibility and nesting
counts for hypothesised splits as measures of the ‘support’ for the splits provided by the data and as the
bases for randomisation tests of splits. Wilkinson (1998a) introduced an alternative measure of split
support and associated randomisation tests. All of these tests involve randomisation of the character
data. Faith (1991) distinguished between a priori and a posteriori parsimony randomisation tests of
hypothesised relationships. According to Faith, a priori tests are appropriate for testing hypotheses that
have been forwarded independently of the analysis of the data to hand. In contrast, a posteriori tests are
appropriate for testing relationships that are of interest because they are supported by the data. This
distinction has been extended to compatibility-based tests (Wilkinson, 1998a) and PICA implements
both a priori and a posteriori tests of hypothesised relationships through randomisation of the data. In
addition, PICA includes relationship (R)PTP tests in which the relationship (i.e. a split) is randomised
rather than the data (Wilkinson, 1998a; Frohlich & Estabrook, 2000).

Split Conflict and Nesting PTPs

Alroy (1994) used compatibility count for a split as a measure of the ‘support’ provided by the data for
the hypothesised split. The number of compatibilities, expressed as a proportion of the number of
characters, is the complement of the number of incompatibilities. The latter has been referred to as split
conflict by Penny and his co-workers (e.g. Lento et al, 1995) and | follow their terminology here. |
refer to my equivalent of Alroy's test statistic as the a priori split conflict PTP (SCPTP), which for a
split X that has X, conflict with the original data, = the proportion of data sets (original and randomly
permuted) that have as little or less conflict with X than Xs. The corresponding a posteriori SCPTP =
the proportion of data sets (original and randomly permuted) in which any supported split of the same
size as X has conflict less than or equal to X.. Although SCPTPs were proposed as tests of the null
hypotheses that particular relationships are no better supported than might be expected by chance
alone, the use of split conflict as a measure of support is problematic. Wilkinson (1998a) showed that,
used in this way, split conflict randomisation tests are very liberal and that their power is dependent
upon split size. He also suggested that, because split conflict was a measure of support for incompatible
groups and therefore only an indirect measure of support for a particular group, the SCPTP might be
better taken as a test of non-monophyly (the strength of evidence against a group) than of monophyly.
Used in this way high SCPTPs (e.g. 3 0.95) indicate significant evidence for non-monophyly. A priori
and a posteriori SCPTP tests are implemented by spLIT.EXE and by four programs (FAITH1-4.EXE)
controlled by FAITH.BAT respectively. Both tests can be applied to full splits (bipartitions, components,
clades) but partial splits, can only be investigated with a priori tests.

Alroy (1994) also described a test of splits using nesting rather than conflict or compatibility. The split
nesting PTP (SNPTP) of a split is the proportion of data sets (original and randomly permuted) with
which the split has as many or more hierarchical nestings as it does with the original data. This a priori
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PTP test is implemented by ALROY.EXE. An a posteriori test is also readily defined but awaits
implementation. This approach is applicable only to polar characters and, in PICA, only binary
characters.

Split Support PTPs

Randomisation tests of splits based on split support are a logical extension to Alroy's (1994) tests
(Wilkinson, 1998a). Split support is a weighted sum (see below) of the number of characters in the data
supporting a particular split. In PICA a character is taken as supporting a split when there are no
character states that are common to both the groups of taxa identified by the split. Like hierarchical
nesting, the relationships of split support is a subset of the relationships of compatibility, but it differs
in its applicability to unrooted trees and to non-polar characters. As with SCPTPs, SSPTPs can be
determined for full or for partial splits and they comes in a priori and a posteriori versions that are
implemented by SPLIT.EXE and FAITH.BAT respectively (for formal definitions substitute ‘support’ for
‘conflict” and ‘as much or more” for ‘as little or less “ in the definitions of the SCPTPs given above.
Frohlich & Estabrook (2000) referred to this concept of support as ‘Wilkinson Support’ to distinguish it
from parsimony based concepts. Importantly, a character can provide Wilkinson support for a split
when it is parsimony uninformative if it is possible for non-homoplastic character state changes to have
occurred on the branch corresponding to the split (see Wilkinson [1998a] and Frohlich & Estabrook
[2000] for further discussion and explanation). As used in PICA, split uninformative characters are
those that cannot support any non-trivial split (i.e. of size greater than one).

PICA uses a weighted split support measure. Complete binary characters support a single split, but
with unordered multistate data, or where there are missing entries, a given character may be interpreted
as supporting several splits. Importantly the number of splits a character supports is a function of the
numbers of character states, and increases faster than the number of splits that can be supported
simultaneously by any single set of non-homoplastic (i.e. parsimonious) character state changes . A
weighted split support measure is provided by downweighting the split support provided by each
character to each split according to the ratio of the number of splits it can simultaneously support to the
number of splits it can potentially support (Wilkinson, 1998a). It should be noted that although the
underlying support concept is the same, the weighting of split support used here is very different from
the measure of Wilkinson support employed by Frohlich & Estabrook (2000).

Split support randomisation tests are a direct means of testing the level of support for phylogenetic
relationships without building trees. Passing such tests might reasonably be considered a requirement
for relationships to be considered well supported by the data, and building phylogenetic trees from all
splits that pass am posteriori support randomisation tests (a reduced spectrum of splits in the data)
using either compatibility of parsimony methods with support based weighting is an interesting option
(Wilkinson, 1998a). An important caveat is that the tests are sensitive to taxonomic scope (i.e. the
number of taxa included). This warrants further study and suggests that, with large numbers of taxa, an
experimental approach in which subsets of the data are investigated should be adopted.

Split Support and Split Conflict Relationships PTPs

The a priori and a posteriori split support, nesting and conflict PTPs described above are based on
comparison of these measures from the original data with the scores they achieve in random
permutations of that data. Wilkinson (1998a) pointed out that the relationship between data and splits
can be reduced to that expected by chance alone either by random permutation of the data or by random
permutation of the split. The latter procedure involves randomly permuting the membership of taxa
across a split to producing a sample of random splits each of the same size as the original. Frohlich &
Estabrook (2000) also used random permutation of either splits or of data in their Wilkinson Support
Analyses. Permutation tail probabilities determined from comparison of the fit of the data to a given
split to the fit achieved by comparable random splits are distinguished as relationship PTPs (RPTPs).
Thus, whereas the SSPTP is a test statistic for the null hypothesis that the split has no more support
from the original data than with random and phylogenetically uninformative data, the SSRPTP (split
support RPTP) is a test statistic for the null hypothesis that a split has no more support from the data
than do comparable (same sized) but random splits. The difference is important. PTP tests based on
data randomisation represent a kind of worst case scenario of data quality. In contrast, RPTP tests
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make no assumptions about the data, other than it is as it is. For data sets with few taxa, the number of
permutations of splits may be low and this should be taken into account when considering appropriate
levels of significance. In PICA, RPTP tests are implemented for support and conflict measures in
RPTP.EXE. Wilkinson (1998a) suggested that restricting the comparison of splits scores with those of
only incompatible randomly permuted splits might be justified on the view that the scores of
compatible splits are not relevant. This option, which should produce a more conservative test, is
implemented in RPTP.EXE.

Le Quesne Probability

The Le Quesne probability (Wilkinson, 1992a) is a test statistic for the null hypothesis that a particular
character is no less incompatible with the other characters in the data than is a random character.
Failure to reject the null hypothesis may be taken as grounds for discarding or otherwise
downweighting characters. It is determined by random permutation or exhaustive enumeration of the
assignment of character states to taxa. The incompatibility count of each permutation is determined and
compared to that of the original character. The Le Quesne probability is the permutation tail probability
that describes the chance of random permutations of the assignment of character states to taxa
achieving as low or lower incompatibility count than the original character. The advantage of this test
is that, unlike the character normal deviate, no assumption is made concerning the randomness of the
other characters in the data. The only assumption is that these characters are as they are, surely the
safest of all possible assumptions. Meacham (1994) has independently developed a measure which is,
except for trivial differences, the same as the Le Quesne probability. Meacham (1994) used character
weighting based on Le Quesne probabilities to study angiosperm phylogeny. Other examples of the
application of the Le Quesne probability are provided by Wilkinson (1997a) and by Wilkinson &
Nussbaum (1996). For data sets with few taxa, the number of permutations of a character may be low
and this should be taken into account when considering appropriate levels of significance. Le Quesne
probabilities can be determined using LQPROB.EXE (binary data only) and DNALQP.EXE.

Jackknife Compatibility

Gauld & Underwood (1986), following ideas first presented by Guise et al. (1982), developed a
'marking procedure' to identify when specified taxa were particularly responsible for incompatibilities.
In PICA, measures based on this idea are calculated by taxon jackknifing. If we determine the matrix
incompatibility count we can compare this to the incompatibility counts for matrices lacking a
particular taxon, the difference giving a measure of the number of incompatibilities that do not pertain
when the taxon is not considered, and that are therefore in some sense caused by the excluded taxon.
JACTAX.EXE calculates the conflicts caused by a given taxon through a first order jackknife (removal of
single taxa) or optionally a second order jackknife (removal of all pairs of taxa including the taxon of
interest). For the second order jackknife, scores for individual taxa are average conflicts caused by all
pairs including the taxa.

JACTAX.EXE allows the number of conflicts caused by particular taxa (first order jackknifing only) to be
compared to the expectations under two alternative models by repeatedly replacing the taxon with a
randomly generated taxon. In the first model, character states for the random taxon are chosen
equiprobably from the observed set of character states for each character. In the second model,
character states are chosen with probabilities based on their observed frequencies. Randomly generated
taxa will tend to cause fewer conflicts under the second model. With both models, missing entries are
maintained as in the original taxon. Tail probabilities based on the comparison of the conflicts caused
by the original and the randomly generated taxa serve as test statistics for the null hypotheses that the
taxon causes no less conflict than a randomly generated taxon under the specific model. The data for
taxa that fail the test might be considered no better than random, but the tail probabilities should be
interpreted cautiously. The number of conflicts caused by a taxon depends upon how many unique
combinations of character states are represented by the taxon, and how many of these result in
additional incompatibilities. Thus a taxon's performance will be highly contingent on what other taxa
are included. Similar taxa will tend to cause few incompatibilities in a first order jackknife. However,
JACTAX.EXE may help to identify problematic taxa. A corresponding parsimony-based test could be
constructed using length differences of tees that include or exclude taxa.
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Incompatibility Excess Ratios

In the context of parsimony, Archie (1989b) proposed a descriptive statistic of data quality, the
homoplasy excess ratio that is based on comparison of parsimony tree length for the original data and
the average length of parsimony trees for randomly permuted data. Analogous measures using
incompatibility also describe the extent to which the data departs from the worst case scenario of
randomly permuted data (Wilkinson, 1997c). MATRIX.EXE calculates two incompatibility excess ratios
(IER; and IER,). IER; = (R-O)/R and IER, = (N-O)/N where R is the average conflict for randomly
permuted data, O is the observed conflict for the original data and N is the ninety-five percent cutoff
(the maximum level of conflict that the original data can have while passing the test at the standard
level of significance). The latter measure follows a suggestion by Faith & Cranston (1991).

Missing Data

Missing data complicates the calculation of probabilities of (in)compatibility because there are several
possible treatments. Using the analytical approach, comparisons involving missing entries (e.g. a ‘1" in
one character is paired with a '?' in another character) can either be ignored (Le Quesne, 1972) which
effectively assumes the association is constant, or alternatively the distribution of missing entries, and
thus their associations between taxa and characters, can also be considered random (Wilkinson, 1992a).
The latter approach is more complex, and SETPICA.EXE implements Le Quesne's simpler alternative.
For many of the programs that use random permutation, missing data can be maintained in its original
positions or included in the random permutation. Inasmuch as some distributions of missing data (e.g.
its concentration in particular taxa) may affect the number of pairwise comparisons that are invalidated
by missing entries for one or both of the characters, the former may be preferable because it makes no
unnecessary assumptions about the probability of alternative distributions of missing data. For the a
posteriori SC and SSPTP tests, splits have to be identified from the original and from randomly
permuted data. In the current implementation of these tests only full splits are identified and only from
full characters (those with no missing entries). In calculating split support, the presence of missing
entries for a character increases the number of splits it can support and decreases the weighted support
given to any particular split. The amount of missing data can have a major impact on the conflict
caused by individual taxa, typically the more missing data, the less conflict. JACTAX.EXE reports the
percentage of missing entries for taxa allowing some monitoring of its effect, but no attempt has been
made to standardise conflict scores for levels of missing data in this version of PICA.
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INPUT FILE FORMAT

Input files are of two types. Data files provide listings of taxa and characters and may contain other
information used in the analyses. Split files contain listings of splits for use in a priori and relationship
split tests. PICA has its own format requirements for these files. The format is not complicated and data
files for use with other phylogeny programs can be converted to PICA format with a little text editing.

DATA FILES

Each data file comprises a first line of information, a block of taxon names and character data, and
optional commands and listings of interdependent characters, data partitions, and character selections.
Format differs slightly for binary and multistate data. An example data file based on the data for the
families of caecilian amphibians of Duellman &Trueb (1986) is given in Box 1 and included in the
EXAMPLE.DAT file.

BOX 1. An example data file.

7 19 2 0 1 Duellman and Trueb (1986) caecilian data
Hyp-ancestor* 00000 00000 00000 0000
Rhinatrematidae 00000 00010 00000 0000
Ichthyophiidae 01010 00001 10001 1111
Uraeotyphlidae 01110 10001 10101 1111
Scolecomorphidae 11111 10000 01?11 1111
Typhlonectidae 11111 11111 01111 1111
Caeciliidae 11111 11211 01111 1111

codes

12233456789 10 11 12 13 14 15 16 17
parts

1111111111222222222

const

217

The first Line of a data file must begin with two numbers, the number of taxa and the number of
characters in that order, separated by at least one blank (e.g. ‘7 19’ in BOX 1, line 1). This is
minimum requirement for all programs. After the numbers of taxa and characters, a symbols statement
can be included in the first line. The symbols statement comprises: the number of character states
present in the data, which should not exceed 5, and a list of these character states all separated by
blanks (e.g. 2 0 1, meaning 2 symbols — 0 and 1, in BOX 1, line 1). The symbols statement is ignored
by the programs for the analysis of binary data. It is used by the programs for the analysis of multistate
data whether the data is multistate or not. If no symbols statement is included the programs for
multistate data have a case sensitive default of five states (ACGT-). Other symbols except the dot "',
are interpreted by the multistate programs as missing entries. Following the symbols statement other
information you want echoed to output can be included on the first line after the number of characters
and symbols statement if included and separated from them by at least one blank space.

The Data Block occupies subsequent lines and comprises taxon labels and the character data. Each
taxon must be represented by a label that contains no blanks. Each name must be separated from the
character data by at least one blank or by a line break. Character data follows the taxon name in free
format with blanks and line breaks ignored. Interleaved format is not supported. Unfortunately, PICA
4.0 does not support polytypic terminal taxa or nucleotide ambiguity codes.

Integer Codes provide a means of specifying interdependence between characters. If two or more
characters are the binary factors of a single multistate character then they will necessarily be
compatible. It would be wrong to calculate the probability of these binary factors being compatible at
random as if they were independent characters. To specify interdependence each character is assigned
an integer. The same integer denotes that characters are not independent. Integer codes are signalled by
the command codes in lower case beginning on a new line after the character data. The integer codes
begin on a new line after the codes command and can occupy any numbers of lines of unspecified
length, but they must be separated by at least one space or a line break. For example, in BOX 1, the
integer codes indicate that there are two pairs of interdependent characters (2 and 3, and 4 and 5).
These are the binary factors of ordered multistate characters. Characters do not need to be contiguous
(i.e. a single block in the data) to share the same integer code, making this coding useful for
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representing non-independence of base pairing nucleotides in ribosomal stem structures. If characters
are all independent no integer codes are needed. | believe that PICA is the only package with
randomisation procedures that incorporate this important feature.

Partition Codes can be signalled analogously by the parts command followed by a listing of the
partitions to which each character belongs indicated by the symbols 1-2 (or 1-5 for use with
PARTPICA.EXE). For example, the data in BOX 1 has two partitions comprising characters 1-10 and 11-
19 respectively. Characters need not be contiguous to be included in the same partition. Partitions can
be specified to implement conditional randomisation tests and are needed for tests of partitions.

Constraint Codes allow characters that are not to be excluded during a boildown to be identified. They
are signalled by the const command followed by the number of characters in the constraint and the
reference numbers of these characters. For example, the data in BOX 1 has a constraint of two
characters, namely character 2 and character 7. Multiple character is included in a constraint should be
mutually compatible.

Binary Data: LQPROB.EXE, SETPICA.EXE, NATRIX.EXE and ALROY.EXE work only with binary data.
The character data for these programs must be represented by the symbols '0' and '1', with missing
entries represented by the '?' symbol. Some of these programs interpret ‘1’ as the derived condition
when polarity is assumed. Other character states will be ignored (treated as missing entries) by the
programs.

Reserved symbols and special features: The programs that accept multistate data interpret the dot (\.")
symbol in character data as indicating identity with the character state of the first taxon in the matrix.
The asterisk (**") symbol in a taxon label (which should not be separated from the label by blanks) is
interpreted by the programs as an instruction not to include that taxon in the random permutation. This
is useful for performing conditional randomisation tests (e.g. ones focusing on an ingroup and holding
outgroup taxa constant) or for specifying polarity. When the first taxon in the data has an asterisk in its
name (as in the data in BOX 1) then it can be used in some programs to specify character polarity.

Limitations: The sizes of data matrices that can be analysed differ among the programs. If the limits
cause you problems you should contact the author for advice.

SPLIT FILES

Splits to be tested with SPLIT.EXE or EQSPLIT.EXE must be specified by a split file. An example split file
is given in BOX 2, and included as the EXAMPLE.SPL file.

BOX 2. An example split file.
3 caecilian splits
0001111
00?1111
0101010

The first line of a split file must begin with the number of splits included in the file, separated from
any other information on the first line of the file by a blank. Other information will be written to the
output file. Splits are represented on subsequent lines by strings of '0's and '1's, and in the case of
partial splits by '?'s. The '0's and "1' represent the taxa included in the two groups specified by the split.
Their order in the string representing the order of taxa in the data file. Thus, in the example (BOX 3)
there are three splits. The first is a full split that divides the taxa into the hypothetical ancestor,
Rhinatrematidae and Ichthyophiidae in one group and the Uraeotyphlidae, Scolecomorphidae,
Caeciliidae and Typhlonectidae in the other. The second is the similar partial split that excludes the
Uraeotyphlidae. The third split was formed following an arbitrary rule of placing adjacent taxa in the
data matrix in different subsets of the split. This split is almost certainly random with respect to

phylogeny.
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THE PROGRAMS

The programs are described below briefly and illustrated with output for the example data in BOX 1
and, where applicable the example split file in BOX 2. This is not the most comprehensive data
available for caecilians, and | use it to illustrate the use of the programs rather than as an exercise in
inferring or assessing caecilian family interrelationships.

Output from the various programs begins with two lines identifying the analysis used and the date and
time of execution. This is followed by an ‘“ANALYSIS’ section giving self explanatory information on
the files analysed. The next section, ‘SETTINGS’ gives information on the analytical options
employed. The final section ‘RESULTS’ summarises the results. The results are best viewed in a
simple text editor such as notepad or wordpad. If viewed in a word processor they will be more
readable if you use a proportional font , such as courier.

The programs are of four basic types:
1. those that evaluate entire data sets or data set partitions (MATRIX.EXE, NATRIX.EXE, PARTPICA.EXE).

2. those that evaluate individual characters (LQPROB.EXE, DNALQP.EXE and programs invoked by
BOILDOWN.BAT).

3. those that evaluate splits (SPLIT.EXE, RPTP.EXE, ALROY.EXE and programs invoked by FAITH.BAT

4. those that evaluate taxa (JACTAX.EXE)
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Programs for Evaluating Data Matrices and Partitions

MATRIX.EXE calculates conflict PTPs for entire data matrices (MCPTPs) or for partitions by random
permutation of character data. It also reports the distribution of incompatibility counts for the randomly

permuted data, and calculates their mean, standard deviation, corresponding normal deviate, 95%
cutoff and two incompatibility excess ratios. Where there are two partitions in the data, MATRIX.EXE
optionally reports WCPTPs and BCPTPs with options to randomly permute character data in one or in

both partitions..

An example output file

from an analysis of the

data in BOX 1 is shown
opposite.

This analysis used 99
random permutations
(giving minimum PTPs
of 0.01). Note also that
the power of the test
could be increased by
using more random
permutations.

Character
interdependence, as
specified by the integer
codes in the data file
(BOX 1), was
recognised.

Taxon 1 was not
included in the random
permutation, and
missing data were
maintained in their
original positions. In
addition, characters in
partition 1 were held
constant.

In this case,
MATRIX.EXE gives the
WCPTP for partition 2
and the BCPTP for the
comparison between
partitions 1 and 2.

Holding taxon 1
produces a conditional
test of the ingroup data,
equivalent to assuming
polarities given by the
hypothetical ancestor.

PICA 4.0 - 17/1/2001 17:32
MATRIX - Matrix conflict randomisation test

*** ANALYSIS ***

example.dat 7 taxa 19 characters
Duellman and Trueb (1986) caecilian data

*%k SETTINGS ***

PTPs approximated by 99 random data permutations
Character interdependence as specified by integer codes
Taxa held constant: 1
Missing entries held constant
Partition 1 held constant
**% RESULTS ***
Partition 2
RANDOMLY PERMUTED DATA

Frequencies of Incompatibility Counts

12:1 13:1 15:1 16:1 17:1 18:8 19:9 20:16 21:12 22:19
23:14 24:9 25:7

WCPTP = 0.01

Incompatibility count for partition 2 = 1

Mean count for randomised data = 21.121 +/- 2.487

Normal Deviate = 8.089

95% cutoff = 18

Incompatibility Excess Ratios (1) = 0.953
@) = 0.944

Between partitions

RANDOMLY PERMUTED DATA
Frequencies of Incompatibility Counts

37:2 40:2 41:1 42:3 43:1 45:1 46:4 48:6 49:4 50:6

51:3 52:3 53:7 54:3 55:2 56:4 57:5 58:2 59:4 60:8

61:2 62:4 63:2 64:1 65:4 66:1 67:1 68:2 69:1 70:1

72:1 73:1 74:4 76:1 79:1 80:1

BCPTP = 0.01

Between partition incompatibility count = 12

Mean count for randomised data = 56.303 +/- 9.429

Normal Deviate = 4.699

95% cutoff = 42

Incompatibility Excess Ratios (1) = 0.787
) = 0.714

The significant BCPTP means we can reject the hypothesis that the character data in partition 2 are
random with respect to partition 1.

MATRIX.EXE accepts up to 100 taxa and 500 characters with up to five character states. It accepts
character interdependence as specified by integer codes, allows missing data and individual taxa to be
held constant or randomised, and offers a set of options for the treatment of two data partitions. It
ignores constraints in the data file.
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Programs for Evaluating Data Matrices and Partitions

NATRIX.EXE calculates MNPTPs for entire data matrices (polar binary data only) by random
permutation of character data. It also reports the distribution of nesting counts for the randomly
permuted data, and calculates their mean, standard deviation, normal deviate and 95% cutoff. With
partitions, NATRIX.EXE optionally reports WNPTPs and BNPTPs with options as in MATRIX.EXE.

An example output file from
an analysis of the data in
BOX 1 is shown opposite.

Settings are mostly as for
the MATRIX.EXE analysis
shown above.

The partition included in the
data file was ignored.

The MNPTP is 0.01: we can
reject the null hypotheses
that the data are
indistinguishable from
random.

Random data had between
49 and 75 nestings, with an
average of 57.162 and
standard deviation of 5.079,
compared to the 138 for the
original data.

PICA 4.0 - 17/1/2001 21:21
NATRIX - Matrix nesting randomisation test

*** ANALYSIS ***

example.dat 7 taxa 19 characters
2 0 1 Duellman and Trueb (1986) caecilian data

**% SETTINGS ***
PTPs approximated by 99 random data permutations
Character interdependence as specified by integer codes
Taxa held constant: 1
Missing entries held constant
Partitions ignored
*** RESULTS ***
Full data
RANDOMLY PERMUTED DATA

Frequencies of Nesting Counts

75:1 71:1 68:2 66:1 65:3 64:2 63:3 62:4 61:10 60:6

59:5 58:5 57:7 56:8 55:7 54:1 53:10 52:14 51:5 50:1

49:3

MNPTP = 0.01

Nesting count for original data = 138

Mean count for randomised data = 57.162 +/- 5.079
Normal Deviate = 15.917

95% cutoff = 65

NATRIX.EXE accepts up to 75 taxa and 750 characters. Characters must be binary and polar with ‘0” and
‘1’ representing the primitive and derived states respectively. It accepts character interdependence as
specified by integer codes, allows missing data and individual taxa to be held constant or randomised,
and offers a set of options for the treatment of two data partitions. It ignores constraints in the data file.
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Programs for Evaluating Data Matrices and Partitions

PARTPICA.EXE calculates PPTPs for up to five character partitions of entire data matrices by
random permutation of the assignment of characters to partitions. WCPPTPs are given for each
partition and a BCPPTP is given for the overall between partition conflict. It also reports the
corresponding observed incompatibility counts and means for randomly partitioned data.

An example
output file from
an analysis of the
datain BOX 1is
shown opposite.

Settings are
mostly as for the
MATRIX.EXE
analysis shown
above.

In the example the
WCPPTPs are not
significant
indicating that the
partitions are not
distinguishable
from random
partitions.

PICA 4.0 - 17/1/2001 17:3
PARTPI CA — Wthin and between partition conflict random sation test

*** ANALYS| S ***

exanpl e.dat 7 taxa 19 characters
Duel | man and Trueb (1986) caecilian data

*** SETTI NGS ***
PPTPs approxi mated by 99 random partition pernutations

*xx RESULTS ***

Inconpatibility count for original data = 24
Partition 1 — WCPPTP = 0.75
I nconpatibility count 11

Mean for random partitions 6. 707
Partition 2 — WCPPTP = 0.11

I nconpati bility count = 1

Mean for random partitions = 4. 545
Bet ween partitions — BCPPTP = 0. 83

I nconpati bility count = 12

Mean for random partitions = 12. 747

The insignificant BCPPTP indicates that the partitions are not significantly heterogeneous.

PARTPICA.EXE accepts up to 50 taxa and 1000 characters with up to five character states. It handles up
to five partitions. An important limitation of this version of the program is that it ignores character
interdependence as may be specified by integer codes. It also ignores the**” symbol in taxon names and
any constraints in the data file.
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Programs for Evaluating Individual Characters

DNALQP.EXE calculates Le Quesne probabilities of individual characters by random permutation of
those characters. For each character the program gives the number of observed incompatibilities, the
number expected under the null hypothesis (the average for the random permutations), the Le Quesne
probability, and the minimum number of incompatibilities observed from the random permutations
with the corresponding minimum Le Quesne probability that could have been achieved by the character
(as evidenced by the observations from random data).

An example output file
from analysis of the data in
BOX 1 is shown opposite.

Settings are mostly as for
the MATRIX.EXE analysis
shown above.

Taxon 1 (the hypothetical
ancestor) was not included
in the random permutation
(but provided information

PICA 4.0 - 17/1/2001 16:18
DNALQP.EXE - Le Quesne Probability randomisation test

*xk ANALYSIS ***

example.dat 7 taxa 19 characters
Duellman and Trueb (1986) caecilian data

*** SETTINGS ***

Approximation by 99 random character permutations
Character interdependence as specified by integer codes
Taxa held constant: 1

Missing entries held constant

on polarity). Le Quesne probabilities => 0.0000

Note that, in this example, | *** RESULTS ===

the minimum Le Quesne

iliti . Incompatibilities Le Quesne Minimum
pTObabl!uesaquu“e N Obs Expected Probability Probability/0Obs
high. This reflects the [ e
small size of the data. % i icz)% 8-23 8-23 i
There are pnly seven taxa, 3 3 1244 0.06 0.06 3
one of which was held 4 : Equivalent to Character 2
constant, and thus few 5 : Equivalent to Character 1
dlstlnct permutatlons Of 6 : Eguivalent8t09CharaCt8r03 0.0 o
. 7 .4 .07 .07

characters are pOSSIbIe_._If 8 Equivalent to Character 7
the Le Quesne probability 9 - 15 12.02 0.70 0.05 1
were to be used as a test 10 : 8 13.91 0.16 0.04 2
statistic with such few L = 9 8.68 0.37 0.06 0
trials. what is sianificant 12 : Equivalent to Character 1

; 19 13 : 3 12.70 0.12 0.12 3
should be considered 14 : Equivalent to Character 1
cmefu"y. 15 : Equivalent to Character 2

In this example, several of the characters that have ‘non-significant’ Le Quesne probabilities achieve
the estimated minimum possible observed incompatibilities and therefore, judged by their compatibility
they are as good as they can be given the structure of the data. The worst characters appear to be 9, 10
and 11 which have Le Quesne probabilities > 0.2.

Where characters are equivalent (identify the same split and have the same, if any, patterns of
interdependence), their Le Quesne probabilities are identical. Thus there is no advantage to analysing
sets of equivalent characters and DNALQP.EXE reports the results for the first character and the
equivalence of the others. Characters that are parsimony uninformative, and for which the test is
meaningless, are reported as such. In the example output characters 16-19 have been excluded, they are
equivalent to character 2.

DNALQP.EXE accepts up to 50 taxa and 1000 characters with up to five character states. It accepts
character interdependence as specified by integer codes, allows missing data and individual taxa to be
held constant or randomised, allows a subset of characters to be tested and results to be output only for
characters with Le Quesne probabilities higher than a user—specified threshold. It ignores data
partitions or constraints in the data file. Optionally, it will output a data file including only characters
with Le Quesne probabilities smaller than a user-specified threshold.
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Programs for Evaluating Individual Characters

LQPROB.EXE calculates Le Quesne probabilities for individual binary characters by either random
permutation of those characters, or exhaustive enumaration of all permutations, depending on whether
the number of possible permutations is less than the number of random permutations selected by the
user or not. It calculates the probabilities exactly when this requires less computation than estimating
them through random permuatation. For each character the program gives the number of observed
incompatibilities, the number expected under the null hypothesis (the average for the random
permutations), the Le Quesne probability, and the minimum number of incompatibilities observed from
the random permutations with the corresponding minimum Le Quesne probability that could have been
achieved by the character, and the number of trials.

ﬂon1andyshcﬁthe LQPROB - Le Quesne Probabilities for binary data

data in BOX 1 is shown | === ANALYSIS ***
opposite.
. example.dat 6 taxa 19 characters

Settings are mostly as 2 0 1 Duellman and Trueb (1986) caecilian data

for the MATRIX.EXE
analysis shown above.

Taxon 1 (the Exact galcglation by exhaustive enumeration i

A Approximation by 99 random character permutations
hypothetical ancestor) Polarity determined by hypothetical ancestor
was not included in the | Character interdependence as specified by integer codes

random permutation but
was used to specify

polarities. Incompatibilities Le Quesne Minimum

N Obs Expected probability probability/obs trials
1 2 12.05 0.05 0.05 2 20
2 1 10.33 0.2 0.2 1 6
3 3 12.27 0.07 0.07 3 15
4: Equivalent to Character 2

5: Equivalent to Character 1

6: 3

7

8

9

*** SETTINGS ***

*%k RESULTS ***

The results are largely
in agreement with those
from the DNALQP
analyses. In all cases
the number of possible
permutations of
characters was less than

Equivalent to Character
0 8.40 0.07 0.07 0 15
Equivalent to Character 7

the number of random 103 1? ggg g-gg 8-8? % ig
permutations specified 11- 3 .40 0.13 o 0 i
SOthat?XQCtLE(QUGSne 12: Equivalent to Character 1
probabilities were 13: 2 11.70 0.1 0.1 2 10
determined. 14: Equivalent to Character 1

LQPROB.EXE accepts up to 100 taxa and 500 characters. Characters must be binary and must be coded
using “0’s, and “1’s and with *?’s for missing entries. Characters may be polar or non-polar. Polarity is
assumed when the first taxon in the matrix includes the **” symbol in its name, in which case its
character states are considered primitive and any characters coded as *?’ are treated as non-polar.
Otherwise all characters are treated as non-polar. It accepts character interdependence as specified by
integer codes. Missing data are held constant and cannot be included in the randomisation in
LQPROB.EXE. It allows a subset of characters to be tested and ignores data partitions or constraints in
the data file. If you abort the program, results for characters that had been analysed to that point are
written to file.

If you encounter problems with LQPROB.EXE try using DNALQP.EXE which is simpler (and therefore less
likely to go wrong).
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Programs for Evaluating Individual Characters

BOILDOWN.BAT controls the operation of SETPICA.EXE and BOILPICA.EXE that jointly implement
boildowns and character ranking for binary data using CCSRs or Normal Deviates. The output includes
matrix and character CCSRs and normal deviates and as observed and expected number of
incompatibilities of each character. In each iteration of the boildown the worst characters are identified
and deleted, and revised matrix CCSRs and normal deviates are given. Final values of these measures,
and the composition of the core set are given and absolute weights are reported for all characters.

. BOILDOWN - Iterative character ranking using the
from an anaIySIS of the Coefficient of Character State Randomness

data in BOX 1is shown wxx ANALYSIS ***
opposite. Some results are | 7 taxa 19 characters
excluded but the salient 2 0 1 Duellman and Trueb (1986) caecilian data

*** SETTINGS ***

Interdependence of characters recognised
. . Characters are polar

This analysis used the Constraint of 2 characters : 1 7

CCSR to rank characters. | +xx RESULTS ***

features remain.

. Matrix CCSR = 0.2270 Matrix Normal Deviate = 12.9117
Settings are mostly as f_or Incompatibili Ity
the MATRIX.EXE analysis N Observed Expected CCSR Ndev
shown above. | 777777 ———m— oo
1 2 11.9000 0.1681 4.6809

Characters were treated as i i 18 gggg 8-8322 i-gggz
polar based on _the coding 5 2 11.4000 0.1754 4.5927
of the hypothetical 6 3 13.0333 0.2302 5.0271
ancestor and a constraint 7 0 8.6000 0.0000 3.8222
used to prevent two 10 7 127333 olsasr 2,713
characters from being 1 3 86000 0.3488 5 4065
deleted. 12 2 11.9000 0.1681 4.6809

. 13 2 11.7000 0.1709 4.5463
The matrix CCSR and 14 2 11.9000  0.1681  4.6809
Normal Deviate indicate 15 1 11.1000 0.0901 4.6539

that e datass awhole s | oo
far from random. Note 9

Obs = 2.5263 CCSR = 0.2154 Normal Deviate = 4.0482
that the values forthedata | -c oo __________________________
change with the *** BOILDOWN ***
limination of char r 1 - Deleted Character(s): 9 CCSR = 1.2295
€ ation of characters Reduced Matrix Normal Deviate = 14.0847 CCSR = 0.0962

|ntheboHdQMN1gnnnga Absolute Character Weight = 1
measure of increases or 2 - Deleted Character(s): 10 CCSR = 0.5028
decreases in the apparent Reduced Matrix Normal Deviate = 13.8259 CCSR = 0.0368

: i Absolute Character Weight = 3
quality of the remaining 3 - Deleted Character(s): 11 CCSR = 0.4018
data.. Reduced Matrix Normal Deviate = 14.0262 CCSR = 0.0000

. .. Absolute Character Weight = 6
The boildown eliminates .

characters 9, 10m and 11 | core set of 16 Compatible Characters
in that order’ |eavinga 12345678 12 13 14 15 16 17 18 19
Average of Original CCSRs in Core Set = 0.1227
core set of 16 characters. Absolute Character Weight of Core Set Characters = 12

BOILDOWN.BAT accepts up to 100 taxa and 500 characters. Characters must be binary and must be
coded using ‘0’s, and “1’s and with *?’s for missing entries. Characters may be polar or non-polar.
Polarity is assumed when the first taxon in the matrix includes the “*’ symbol in its name, in which
case its character states are considered primitive and any characters coded as ‘?” are treated as non-
polar. Otherwise all characters are treated as non-polar. It accepts character interdependence and
character constraints as specified in the data file. It ignores partitions.

SETPICA.EXE writes a temporary file during its execution. This can be quite large and it is recommended
that the routine be run in a directory/folder on a hard drive, and not on a floppy disc.
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Programs for Evaluating Splits
SPLIT.EXE calculates a priori SC and SSPTPs for given splits by random permutation of the
character data. For each prespecified split it also reports its index, its conflict and its weighted support,
and average conflict and weighted support values for randomly permuted data.

file from an SPLIT - A priori split support and conflict randomisation tests

analysis of the data [ =xx ANALYSIS ***

in BOX land the
Sp|itS in BOX 2is example.dat 7 taxa 19 characters example.spl 3 splits

. Duellman and Trueb (1986) caecilian data caecilian splits
shown opposite.

. *hk *hk
Settings are mostly SETTINGS

as for the SS- and SCPTPs approximated by 99 random data permutations

MATRIX.EXE Character interdependence as specified by integer codes

analysis shown Taxa held constant: 1

above Missing entries held constant

If the split is T RESULTS =

partial, the iNdeX IS | = oo oo oo

given as zero. SPLIT Index Conflict PTP Mean  Support PTP Mean
0001111 15 3 0.01 13.95 2.5000 0.01 0.1465
0071111 0 1 0.01 10.46 9.5000 0.01 1.4899
0101010 42 19 1.00 13.17 0.0000 1.00 0.3131

The results indicate that the first split shows far less conflict with the original data than it does with
randomly permuted data. Similarly, the split is far better supported by the original data than by
randomly permuted data. The similar partial split is also well supported. Note that the splits differ only
in the exclusion of the Ichthyophiidae (taxon 3) from the latter, and that this yields greater support and
lower incompatibilities/conflict. Changes in the reverse direction with the elimination of taxa are not
possible. The last split is essentially random with respect to background knowledge of caecilian
phylogeny and has never been entertained. The analysis shows that this split is no better supported by
the real data than by random data and that it has it has significantly more conflict with the real data than
it has with randomly permuted data. The latter suggests that the data contain significant evidence of
the non-monophyly of either group identified by the split.

SPLIT.EXE accepts up to 50 taxa and 1000 characters, with up to five character states. It accepts
character interdependence as specified by integer codes, allows missing data and individual taxa to be
held constant or randomised, and accepts full or partial splits. It ignores partitions and constraints in the
data file.
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Programs for Evaluating Splits

ALROY.EXE calculates a priori SNPTPs for given splits by random permutation of polar binary
character data. For each prespecified split it also reports the split, its index, its nesting count, and the
average nesting count for for randomly permuted data.

An example output file from
an analysis of the data in
BOX 1land the three splits in
BOX 2 is shown opposite.

Settings are mostly as for the
MCPTP.EXE analysis shown
above.

The results are parallel those
of the split support test
reported by the SPLIT
program (above).

PICA 4.0 - 20/3/2000 21:20
ALROY - A priori split nesting randomisation tests

*** ANALYSIS ***

example.dat 7 taxa 19 characters example.spl 3 splits
2 0 1 Duellman and Trueb (1986) caecilian data
caecilian splits

*** SETTINGS ***

SNPTPs approximated by 99 random data permutations
Character interdependence as specified by integer codes
Taxa held constant: 1

Missing entries held constant

*sk RESULTS ***

SPLIT Index Nesting PTP Mean
0001111 15 16 0.01 4.626
00?1111 0 18 0.01 7.970
0101010 42 0 1.00 4.980

ALROY.EXE accepts up to 50 taxa and 1000 characters. Characters must be binary, coded with ‘0’ and
‘1’, and are assumed to be polar with ‘1’ derived. It accepts character interdependence as specified by
integer codes, allows missing data and individual taxa to be held constant or randomised, and accepts
full or partial splits. It ignores partitions and constraints in the data file.




PICA 4.0 — User Manual 23

Programs for Evaluating Splits

RPTP.EXE calculates SC and SSRPTPs for given splits by random permutation of these splits. For
each prespecified split it also reports the split, its index, its conflict and its weighted support, and
average conflict and weighted support values for randomly permuted data. Comparable random splits
with which the original split is compared are splits of the same size as the original. Optionally, the
comparison can also be restricted to only those splits that are incompatible with the original split.

An example
output file from
an analysis of the
data in BOX
land the splits in
BOX 2 is shown
opposite.

Settings are
mostly as for the
MCPTP.EXE
analysis shown
above.

Results are
similar to the a
priori split PTP
tests shown
above.

PICA 4.0 - 19/3/2000 17:41
RPTP - Split support and conflict R-randomisation tests

***% ANALYSIS ***

example.dat 7 taxa 19 characters; example.spl 3 splits
Duellman and Trueb (1986) caecilian data caecilian splits

***% SETTINGS ***
SS- and SCRPTPs approximated by 99 random split permutations
All comparable splits used

Missing entries of Partial Splits held constant

*** RESULTS ***

SPLIT Index Conflict RPTP Mean  Support RPTP  Mean

0001111 15 3 0.03 14.23 2.5000 0.03 0.1263
00?1111 0 1 0.10 10.46  9.5000 0.07 0.6364
0101010 42 19 1.00 12.91 0.0000 1.00 0.2626

Note however, that the partial split has higher RPTPs than PTPs. Note also that (as in the Le Quesne
probability tests) the number of trials is low, and *significance” must be considered carefully. For
example, there are only 15 permutations of the partial split.

RPTP.EXE works for up to 50 taxa and 1000 characters, with up to five character states. It accepts full
and partial splits, allows missing taxa in partial splits to be held constant or randomised, and makes
comparisons with either any equivalent splits or only those that are incompatible with the original;
split. It ignores integer codes, partitions and constraints in the data file amnd the “** symbol in taxon

names.
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Programs for Evaluating Splits
FAITH.BAT controls the operation of four programs (FAITH1-4.EXE) that jointly determine a posteriori
SS- and SCPTPs for all full splits supported by a set of data, by random permutation of the data. For
each split FAITH.BAT gives the split index, the split itself, its size, its weighted support, the
corresponding SSPTP, its conflict, and the corresponding SCPTP. Determination of a posteriori SS-
and SCPTPs is achieved by creating a number of random data sets, identifying the full splits supported
by the original and random data sets, their size and their levels of support and conflict. The scores for
each split in the original data are compared to the best scores for same sized splits in the random data.
Optionally, all characters, only those that are parsimony informative or only those that are split
informative can be used.

file from analysis of FAITH - A posteriori split support and conflict

. 5 randomisation tests
the datain BOX 1 is

shown opposite. **% ANALYSIS **=*

Settings are mostly as | 7 taxa 19 characters

for the MATRIX.EXE Duellman and Trueb (1986) caecilian data
analysis shown wxx GETTINGS ***

above.

. SS- and SCPTPs approximated by 99 random data permutations
The seven splits Missing entries held constant
constitute a spectrum | Using all characters

of the support in the
*k%k RESULTS ***

data.
Thr?EOfthesehave Index SPLIT Size Support PTP Conflict PTP
minimal supportand § ________________________ o __
do not pass the split 7 0000111 3 4.0000 0.02 2 0.01
15 0001111 3 2.5000 0.07 3 0.01
however that two of 3 0000011 2 2.0000 0.92 0 0.01
them do pass the 35 0100011 3 1.0000 1.00 15 1.00
more liberal conflict 27 0011011 3 1.0000 1.00 7 0.03
test. 24 0011000 2 1.0000 1.00 3 0.03

The third has significantly more conflict with the data than do comparable splits with random data
—strong evidence for non-monophyly. Only the three best supported groups pass the support test.

FAITH.BAT works for up to 100 taxa and 5000 characters, with up to five character states. It will accept
up to 20,000 characters provided that the number of split informative or parsimony informative
characters does not exceed 5,000 and the option selecting this set of characters is chosen. It reports
results only for full splits supported by the data, and allows missing data to be held constant or
randomised. It ignores integer codes, partitions and constraints in the data file, and the “*” symbol in
taxon names.

Index numbers of splits our output if the number of taxa is less than 49. If the number of taxa is higher
the split is given but not its index.

A number of temporary files are written during the execution of this computationally demanding
routine. These can be quite large and it is recommended that the routine be run in a directory/folder on
a hard drive, and not on a floppy disc.
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Programs for Evaluating Taxa
JACTAX.EXE calculates the incompatibilities caused by particular terminal taxa by first order taxon
jackknife. It optionally reports average scores for randomly generated taxa and reports a corresponding
tail probability describing the proportion of taxa (real and random) causing as little conflict as the real
taxon. Alternatively it reports the conflict caused by taxa determined by a second order taxon jackknife
with no simulation using randomly generated data. Conflicts are reported as absolutes and as
percentages of the total conflict in the data. Missing entries can play an important part in the
compatibility of taxa and the percentage of missing entries in the taxons character data is also reported.
The program refers to taxa by numbers corresponding to their order of appearance in the data file, but
outputs a list of the taxon names corresponding to the numbers.

from two anahmisofthe JACTAX - Taxon Jackknife Compatibility Measures and Tests

data in BOX 1 is shown *xk ANALYSIS ***

opposite. The list of
taxon names has been example.dat 7 taxa 19 characters
ommitted Duellman and Trueb (1986) caecilian data

Settings are mostly as for SETTINGS

the MATRIX.EXE analysis | First and second order jackknife - No randomisation
shown above. Character interdependence as specified by integer codes
Taxa excluded: 1

In the first analysis no

randomisation was used | *** RESULTS ==
and only the first and

second order jackknife
FesUltS are repOrted al 0Ny |R

Matrix Incompatibility Count = 24

: Incompatibilities
Vvuhﬁhe pergentage 1st Order 2nd Order
missing entries of each Taxon %? Caused % Caused %

selected taxon. | —m—mm o

. 2 0.00 15 62.500 16.143 67.262
In the second analysis 3 0.00 5 20.833 9.857 41.071
each taxon was replaced 4 0.00 4 16.667 9.143 38.095
; 5 5.26 10 41.667 12.571 52.381
with 99 randomly 6 0.00 0 0.000 8.714 36.310
generated taxa and the 7 0.00 0  0.000 8.714 36.310
mean numberof | e
comflicts caused by Incompatibilities
Taxon %? Caused % Mean P

random taxa and a
corresponding tail > 0
probabilities (P) for the 3 0
proportion causing as 451 g.oo
6 0
7 0

few conflicts as the real
taxon are reported..

Tail probabilities from the comparisons with randomly generated data may need to be interpreted
carefully. In the example two taxa (6 and 7) cause no conflict. This is because they do not differ in
character states. ‘Significant’ tail probabilities may indicate no more than the presence of similar taxa
in the data. The results do however, indicate that taxa 1 and 5 are particularly responsible for the
conflict in the data. Although the tail probabilities for these taxa are not significantly different from
random, this does not necessarily indicate that the taxa should be eliminated from any analyses.
Eliminating taxa from analyses carries its own dangers (Wilkinson, 1995b). The results may however
prompt a re-evaluation of their morphology or the attempt to improve their performance by identifying
and possibly eliminating or downweighting the problematic characters.

JACTAX.EXE works for up to 50 taxa and 1000 characters, with up to five character states. It provides
options for randomly generating data or for performing a second order taxon jackknife. It accepts
character interdependence as specified by integer codes so that randomly generated taxa cannot cause
conflict between interdependent characters that cannot be incompatible. Missing entries are not
replaced by character datat in randomly generated taxa. Individual taxa can be excluded from tests, but
their data is included in the tests of other taxa. It ignores partitions and constraints in the data file.
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RUNNING THE PROGRAMS

Most of the programs are stand alone entities. To run a program enter its name at the DOS prompt (or
click on its name/icon under Windows). Performing a boildown or calculating a posteriori SS- and
SCPTPs requires several programs to be run sequentially. This can be done using the DOS batch files
BOILDOWN.BAT and FAITH.BAT respectively. As with the stand alone programs enter the batch file name
or click on its icon.

User input: Most of the programs require some input from the keyboard. The required input may
include filenames, single letters, numbers, or carriage returns. Be careful when entering data from the
keyboard: not all the programs have full error error-checking. When programs ask a question requiring
a yes/no type answer you must use the single letter ‘y” or ‘n’ [N.B. you must use lower case]

Filenames: - Most programs call for the names of input, output and where applicable split files. If
specified input data or split files do not exist you will be prompted for another file name. If output files
already exist you will be asked if you want to overwrite them.

Characters: Some programs allow you to focus on a subset of characters. Where the programs require
the characters to be specified from the keyboard they must be referred to by the number of the column
they occupy in the character data (between one and the total number of characters). In such cases the
programs can only deal with one contiguous block of characters and will prompt for the numbers of the
first and last characters in the block.

Aborting operation: You can abort the execution of most of the programs by hitting CONTROL-
BREAK, although you may sometimes have to wait a little while (as the program exits a subroutine)
for this to take effect. Where the programs detect serious errors they may prompt you to take this
action. With the Le Quesne probability, boildown, and split rPTP programs results up to the point
where the run is aborted will have been written to the output file.

Specific questions and responses: Some of the potential problems are that may be encountered in
running the programs will produce specific error messages which should be self explanatory. Most of
the other questions or instructions to which you must respond are described here.

Select a contiguous subset of characters to test?

Runs of the Le Quesne probability programs LQPROB.EXE and DNALQP.EXE may be very time
consuming. Results are written to output as they are accumulated so that aborting the program will not
cause the loss of all results. This option allows you to specify that tests are to be performed for a
particular subset of the characters/sites. Ignored characters are used in the calculation of compatibility
scores for included characters but not themselves tested.

Include results for characters with Le Quesne probability =>

Responses to this prompt control the output of DNALQP.EXE. The prompt requires a number between 0
and 1. Entering ‘0’ (zero) ensures that results for all characters are written to the output file. Higher
values will exclude results for characters with Le Quesne probabilities lower than the specified value.
Thus results will be for the worst characters.

Write characters passing the test to a new data set?
Include results for characters with Le Quesne probability <=

Responses to these prompts allow DNALQP.EXE to create a new data file including only those characters
that have Le Quesne probabilities lower than the user-specified value (which must be a number
between 0 and 1).

Maintain original positions of missing entries?

This allows you to either include missing entries in the random permutation or to maintain their
positions as in the original data. A persistent bug affects some programs when missing data is
maintained in its original positions and a selection of a subset of characters is also made.
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Maintain positions of missing entries in partial splits?

This allows the test of partial splits in RPTP.EXE to focus upon partial splits including just those taxa
included in the original partial split.

Enter number of trials (random permutations) :

This must be a positive integer. In LQPROB.EXE, if this number exceeds the number of permutations of
the binary character being tested then the Le Quesne probability will be determined by exhaustive
enumeration. Otherwise tests are by random permutation. The exhaustive method not only provides a
more precise measure, but it may also reduce run times.

Partition detected — Select Treatment
0 — Ignore
1 — Randomly permute both partitions
2 — Hold Partition 1 constant
3 — Hold Partition 2 constant
Enter your selection:

The MATRIX.EXE and NATRIX.EXE programs will detect partitions if they are included in the data file.
Options governing the treatment of partitions are specified and are selected by entering the
corresponding number. The detected partitions can be ignored. Alternatively, if one or both can be
randomly permuted and results will include WCPTPs for the randomised partitions and BCPTPs for the
between partition incompatibility. Options 2 or 3 provide a means of restricting the random
permutation to a subset of characters and thereby performing a conditional test (see Wilkinson, 1997a
for an example).

Symbols statement expected.
Press enter to use default settings; Control-break to abort.

If no symbols statement is found by any of the programs for multistate data, you will be asked whether
the program should continue using the default symbol set. The case sensitive default is for DNA data
using the symbols 'A', 'C', 'G', 'T', and '-', with gaps ('-') treated as a fifth character state. If you do not
wish to treat alignment gaps as a fifth state exclude the '-' symbol from your symbols statement, and,
along with all other unspecified symbols, it will be treated as representing missing entries.

Compare only with incompatible comparable splits?

The RPTP.EXE program allows specified splits to be compared with any comparable (i.e. same size)
splits or with only those comparable splits that are incompatible with the original. The latter would
seem to be a reasonable restriction if the behaviour of compatible equivalent splits is considered
irrelevant to the evaluation of the original split (Wilkinson, 1998a).

Use: 1 - All data

2 - Split informative data

3 - Parsimony informative data
Enter your selection:

The first part of the FAITH routine (FAITH1.EXE) allows the user to restrict attention to subsets of the
data. Options are specified and are selected by entering the corresponding number. Analytically, using
all the data is the same as using only split informative data (uninformative data is ignored) but the latter
is more efficient and may allow larger data sets (more characters) to be analysed. The third option
allows only parsimony informative characters to be used in the tests should this be desired.

Choose ranking criterion : 1. CCSR
2. Normal deviate

BOILPICA.EXE offers the choice of ranking characters by coefficients of character state randomness or
normal deviates. To run both analyses you will need to run the program twice.
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Select model of random taxon generation
0 - No Randomisation
1 - Character States Equiprobable
2 - Use Empirical Frequencies
Enter your selection :

JACTAX.EXE offers three options. The first option results in first and second order taxon jackknifing
with no randomisation. The seconmd and third options result in first order taxon jackknifing and
simulation tests using taxa generated randomly according to the selected model.
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Appendix - Summary of randomisation tests in PICA
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