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Abstract: Phylogenetic Information Content, a class of measures of the
information provided by consensus trees based on the number of permitted
resolutions of the consensus, is introduced. A formula for the number of permitted
resolutions of Adams consensus trees is derived and a proof given. We argue that
maximising PIC measures provides a sensible criterion for choosing among
alternative consensus trees and we illustrate this for consensus trees of cladograms.
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1. Introduction

Consensus trees (CTs) are used by systematic biologists, in many different
contexts, to summarise graphically the agreement between multiple fundamental
phylogenetic trees. The development of many alternative consensus methods raises
the issue of choice between methods and/or tree(s). In this paper we derive a class
of measures of the information provided by phylogenetic trees, argue that in
certain contexts the optimal CTs are those which convey the most information, and
illustrate the approach.

2. Phylogenetic Information Content

In order to convey information a CT must prohibit a subset of the possible
phylogenetic relationships (Mickevich and Platnick, 1981; Wilkinson, 1994).
Given that the information (I) conveyed by an event is

I = −
∑

log
probability of the event

probabilities of all possible events (1)

where the base of the logarithm determines the unit of information (e.g. log2-bits;
ln - nats), then, under the assumption that all possible phylogenies are
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bifurcating and equiprobable, the Phylogenetic Information Content (PIC) of a tree
is

PIC  
number of permitted bifurcating trees ( )

number of possible bifurcating trees ( )
R

T

= − log
n

n
. (2)

Because the concept of a phylogenetic tree is a general one, PIC defines a class of
tree information measures with specific measures existing for each type of
phylogenetic tree. In this paper, we focus exclusively on cladograms, which are the
n-trees of Bobisud and Bobisud (1972), and the corresponding PIC measure which
we refer to as Cladistic Information Content (CIC).

For a CT to provide phylogenetic information, nR must be less than nT, i.e., it must
be possible to deduce from the CT alone which of the possible trees could not have
been represented among the fundamentals. We refer to CTs which, unless totally
unresolved, always fulfil this condition as prohibitive. Permissive CTs are those
which permit all possible trees (i.e. nR =nT) irrespective of their resolution. In order
to be prohibitive, CTs must be strict sensu Wilkinson (1994), i.e., their groupings
must represent a particular type of phylogenetic relationship (components, n-taxon
statements or nestings) that occurs in all the fundamentals.

3. Calculating CIC

The number of possible bifurcating rooted cladograms (nT) is a function of the
number of leaves n and is given by RB(n)

RB n n( ) ( )!!= −2 3 . (3)

Rohlf (1982) provided equation (4) for calculating the number of permitted
bifurcating trees (nR) for strict CTs of rooted cladograms whose groupings
represent components or other n-taxon statements, i.e., the CTs produced by the
strict component (Sokal and Rohlf, 1981), strict Reduced Cladistic (RCC),
Reduced Adams (RAC), Disqualifier-Faithful (DF) (Wilkinson, 1994), and Largest
Common Pruned (LCP) (Gordon, 1980) consensus methods.

n RB dR i
i V T

=
∈
∏ ( )

( ) 
(4)

where di is the number of vertices immediately descendant from vertex i in the set
of vertices V(T) of tree T.
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The number of permitted resolutions (nR) of an Adams CT (Adams, 1972), the
only strict CT to capture nestings (Adams, 1986), is

nR = µ root (5)

where

( ) ( )

( )( )
µ

µ

i

j
j D

A B

j
j D

A B D

i

i

i

RB g RB g

RB h
=













∈

∈

∏

∏
∑

,  a split of 
(6)

where Di is the set of vertices immediately descendant from vertex i, a split of a set
D, is in this case, a partition of D into two non-empty, mutually exclusive subsets
whose union is D, gA is the number of leaves descendant from subset A of V(T),
and hj is the number of leaves in the jth subtree descendant from vertex i. The
proof of this is given in the appendix.

4. Choosing a CT

The production of a consensus profile, a set of CTs, by several consensus methods
means that each method is not synonymous with a single CT. Furthermore, the
information content of each CT depends upon both the properties of the method
and the characteristics of the particular fundamentals under consideration. Hence
our emphasis is on the choice of CT as opposed to method, although the question
of which method(s) will produce the most informative CT and sets of CT(s) is also
discussed.

In Figure 1, the strict component CT is completely unresolved, and therefore
provides no information, despite the occurrence of considerable agreement among
the fundamentals. Insensitivity of the strict component CT has been well
documented (e.g. Adams, 1986; Swofford, 1991). The Adams CT, in contrast, is
well resolved and provides CIC = 5.159 nats of information. However, the
groupings in the Adams CT represent nestings and thus the polytomies of this tree
are more permissive than those in CTs whose groupings represent n-taxon
statements. The strict RCC 1 and strict RCC 2 CTs provide more information than
the Adams despite being less resolved and/or including fewer taxa.

The LCP, RAC and strict RCC consensus methods overcome the problems of
insensitivity and ambiguity that affect the strict component and the Adams
respectively, by the exclusion from CTs of taxa whose variable position among the
fundamentals prevents unambiguous summary of the relationships common
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to the remaining taxa. Multiple CTs are produced when, as is usually the case,
there is more than one way to exclude taxa to achieve unambiguity.

Figure 1: Two fundamental cladograms (a,b), and their strict CTs [Modified and
extended from Adams, 1972; Wilkinson, 1994]
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LCP trees are produced by pruning single taxa from the fundamental trees until
they are rendered identical. RAC trees are produced by pruning branches from the
polytomies of Adams CTs until the polytomies can be correctly interpreted as n-
taxon statements. The strict RCC method first identifies the complete set of non-
redundant n-taxon statements common to all the fundamentals. These n-taxon
statements are then represented graphically through the production of a consensus
profile.
Because of the way the RCC profile is constructed, no LCP or RAC tree can ever
provide more information than the most informative RCC tree (e.g. Figure 1).
Given that the strict component CT is included in the strict RCC profile unless it is
completely unresolved, then choice of the most informative CT must
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be between the Adams CT or a tree from the RCC profile. In this example, strict
RCC 2 maximises CIC. An example in which the Adams CT is the most
informative CT is provided by Adams (1986; Figure 2).

5. Choosing a set of CTs

CIC can also be used to select the set of CTs which provide the most cladistic
information. However, the occurrence of the same information in more than one
tree means that the combined CIC of a set of CTs can be less than the sum of their
individual CICs. If two strict CTs, both representing n-taxon statements, have the
relationship that all taxa present in one of the trees also occur in the other, then the
information common to the two CTs is the cladistic information content of the
single CT in their strict RCC profile. However, if this relationship does not hold,
then the only currently available way to determine combined CIC is with a brute
force approach (i.e. compare every single possible tree with the set of CTs to
determine whether it is permitted). The problem of selecting a set of CTs from a
consensus profile so as to maximise combined information content appears to be
computationally complex.

Applying the brute force approach to the strict RCC profile in figure 1, we find
that the pair of CTs which maximise combined cladistic information is {RCC 2,
RCC 3} (CIC = 6.954 nats). RCC 1 provides no information that is not already
conveyed by RCC 2 and RCC 3, whilst conversely, all the information provided by
RCC 4 is non-redundant with respect to the other three trees in the profile. Thus
the combined cladistic information content of the entire strict RCC profile is 8.053
(6.954 + 1.099) nats. Because the strict RCC trees graphically represent all n-taxon
statements common to all the fundamentals, the LCP (combined CIC = 5.753 nats)
and RAC (combined CIC = 5.589 nats) profiles will never provide more
information than the strict RCC profile. Furthermore, all the information provided
by these two alternative profiles will be represented in the RCC profile. In fact,
only the Adams CT can convey cladistic information that is non-redundant with
respect to the strict RCC profile.

6. Discussion

Measures of information content provide a basis for choosing amongst alternative
strict CTs and methods. Due to the probabilistic nature of information, it may also
be possible to calculate the phylogenetic information content of majority-rule and
other CTs with groupings that represent relationships occurring in less than 100%
of the fundamentals.
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Although this paper focuses solely on cladistic information, dendrograms, which
are equivalent to cladograms with internally ranked nodes, are another very
important type of phylogenetic tree. Whilst consensus methods which take into
account the rank of internal nodes have been developed (Neumann, 1983;
Stinebrickner, 1984) they suffer from problems of ambiguity or are permissive.
Prohibitive dendritic consensus methods are currently under development by the
authors.

The utility of our measure of phylogenetic tree information content extends far
beyond the selection of CT(s). For example, a natural measure of tree similarity is
the information common to the set of trees (Mickevich, 1978). Conversely, a
measure of tree dissimilarity could be based on the symmetric difference of the
information provided by each tree. Thus, PIC defines a class of tree similarity (and
dissimilarity) measures for studies of congruence that can also be normalised to
produce Consensus Indices (Mickevich, 1978).

Appendix

Proof of equation 6.

We need the following simple lemma:

Suppose we have a forest of k rooted binary trees T1,...,Tk with leaf sets L1,...,Lk

respectively, such that { }U i
k

iL n= =1 1,.. . , , and L Li j∩ = ∅  for all 1 ≤ i < j ≤ k. Let

the number of leaves in each tree Ti be ai. The number of rooted binary trees T* with leaf
set {1,...,n} which contain as subtrees each of the Ti is given by

{ }( )N n a
RB n

RB a
i i

k

i
i

k
;

( )

( )
=

=

=

∏
1

1

.

Proof: It is well known that the number of rooted binary trees with n leaves is (2n-
3)!! = (2n-3)(2n-5)...(3)(1) = (2n-3)!22-n/(n-2)!. One way in which we may
generate all the possible rooted binary trees is by successively adding leaves 1,...,n
to each of the edges of the tree. By adding a2 leaves in a similar way to tree T1 we
can create all the possible trees with (a1+a2) leaves, containing T1 as a subtree, in
( )( ). ..( ( ) ) ( ) / ( )2 1 2 1 2 31 1 1 2 1 2 1a a a a RB a a RB a− + + − = +  ways. Similarly, the

number of trees with (a 1+ a 2) leaves containing T2  as a subtree is
RB a a RB a( ) / ( )1 2 2+ . The above argument is independent of the underlying trees

T1 and T2: ergo the number of trees on n > (a1+a2) leaves containing T1 and T2 is
RB n RB a RB a( ) / ( ( ) ( ))1 2 . The argument is easily extended to T1,...,Tk.
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Let an Adams resolution of a vertex v in a tree T be a resolution of v which is
consistent with treating T as an Adams consensus tree. Now let µi  be the number

of resolutions of the subtree rooted at vertex i of a given Adams consensus tree T.
Then µ root  is the number of Adams resolutions of the complete tree T. We

proceed from the tips of T to the root, finding the number of Adams resolutions of
each vertex j before we continue to the ancestor of j. Let Dj be the set of vertices
which are immediately descendant from vertex j and let |Dj| = dj. Let Lj be the set
of leaf vertices in the subtree Tj rooted at j, and |Lj| = lj. Thus n = lroot and the
degree of vertex j is dj+1. Lastly let G(A) be the set of leaves descendant from the
vertices in the set A V T⊆ ( ) , with cardinality gA.

Consider vertex i V T∈ ( ) , the immediately descendant vertices v Dj i∈  of which

have been resolved into trees T Tdi1 ,. .. , . According to Nelson and Platnick’s

Interpretation 2b (Nelson & Platnick, 1980; Wilkinson, 1994), any Adams
resolution of vertex i must maintain the branching order of the vertices in
T Tdi1 ,. .. , , but this resolution has no other constraints. Thus we may take any split

(A,B) of Di and resolve the vertices descendant from A to one side of i and the
vertices descendant from B D Ai= \  to the other side, while maintaining the

branching order within each of the T Tdi1 ,. .. , . The number of Adams resolutions at

vertex i is thus the sum over all possible splits (A,B) of Di, of the number of rooted
binary trees on leaf set L j

j Di∈
U , containing each of the resolved subtrees

immediately descendant from i. The result follows.
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Erratum (not included in original article)

The equation for calculating the number of permitted resolutions of an Adams
consensus tree is incorrect (Mike Steel, pers. comm.).  The error in the proof is the
statement that ‘The above argument is independent of the underlying trees T1 and
T2.’  In general the number of ways of combining two trees with non-overlapping
leaf sets is not independent of their topologies (Constantinescu and Sankoff, 1986).
The CIC of the Adams CT in Figure 1 is correct.

Constantinescu, M. and D. Sankoff (1986). Tree enumeration modulo a consensus.
J. Classif., 3, 349-356.


